Max-plus Convex Sets and Functions

نویسندگان

  • GUY COHEN
  • IVAN SINGER
چکیده

We consider convex sets and functions over idempotent semifields, like the max-plus semifield. We show that if K is a conditionally complete idempotent semifield, with completion K̄, a convex function Kn → K̄ which is lower semi-continuous in the order topology is the upper hull of supporting functions defined as residuated differences of affine functions. This result is proved using a separation theorem for closed convex subsets of Kn, which extends earlier results of Zimmermann, Samborski, and Shpiz.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Minkowski Theorem for Max-plus Convex Sets

We establish the following max-plus analogue of Minkowski’s theorem. Any point of a compact max-plus convex subset of (R∪{−∞})n can be written as the max-plus convex combination of at most n + 1 of the extreme points of this subset. We establish related results for closed max-plus convex cones and closed unbounded max-plus convex sets. In particular, we show that a closed max-plus convex set ca...

متن کامل

Convexity and Geodesic Metric Spaces

In this paper, we first present a preliminary study on metric segments and geodesics in metric spaces. Then we recall the concept of d-convexity of sets and functions in the sense of Menger and study some properties of d-convex sets and d-convex functions as well as extreme points and faces of d-convex sets in normed spaces. Finally we study the continuity of d-convex functions in geodesic metr...

متن کامل

Max-Plus Convex Geometry

Max-plus analogues of linear spaces, convex sets, and polyhedra have appeared in several works. We survey their main geometrical properties, including max-plus versions of the separation theorem, existence of linear and non-linear projectors, max-plus analogues of the Minkowski-Weyl theorem, and the characterization of the analogues of “simplicial” cones in terms of distributive lattices.

متن کامل

Functionally closed sets and functionally convex sets in real Banach spaces

‎Let $X$ be a real normed  space, then  $C(subseteq X)$  is  functionally  convex  (briefly, $F$-convex), if  $T(C)subseteq Bbb R $ is  convex for all bounded linear transformations $Tin B(X,R)$; and $K(subseteq X)$  is  functionally   closed (briefly, $F$-closed), if  $T(K)subseteq Bbb R $ is  closed  for all bounded linear transformations $Tin B(X,R)$. We improve the    Krein-Milman theorem  ...

متن کامل

Convex Generalized Semi-Infinite Programming Problems with Constraint Sets: Necessary Conditions

 We consider generalized semi-infinite programming problems in which the index set of the inequality constraints depends on the decision vector and all emerging functions are assumed to be convex. Considering a lower level constraint qualification, we derive a formula for estimating the subdifferential of the value function. Finally, we establish the Fritz-John necessary optimality con...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003